首页 学校答疑 拐点是什么(二阶导数等于0是拐点吗)

拐点是什么(二阶导数等于0是拐点吗)

拐点是什么 零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点。 拐点:二阶导数为零,且三阶导不为零; 驻点:一阶导数为零或不存…

拐点是什么

零点,驻点,极值点指的都是函数y=f(x)的一个横坐标x0,而拐点指的是函数y=f(x)图像上的一个点。

拐点:二阶导数为零,且三阶导不为零;

驻点:一阶导数为零或不存在。

极值点:若f(a)是函数f(x)的极大值或极小值,则a为函数f(x)的极值点,极大值点与极小值点统称为极值点。

拐点是位置横纵坐标

驻点是对应的横坐标

极值点是对应的横坐标

极值是纵坐标,也可以写为例如f(1)=5的形式

扩展资料:

拐点是导数符号发生变化的点。拐点可以是相对最大值或相对最小值(也称为局部最小值和最大值)。如果函数是可微分的,那么拐点是一个固定点;然而并不是所有的固定点都是拐点。如果函数是两次可微分的,则不转动点的固定点是水平拐点。例如,函数 x3在x = 0处有一个固定点,也是拐点,但不是转折点。

参考资料来源:百度百科-驻点

二阶导数等于0是拐点吗

不一定,有可能是极值点。

例如y=x^4(x的4次方)。这个函数在x=0点的二阶导数就是0,但是x=0是这个函数的极值点而不是拐点。

直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。

扩展资料

若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。

可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:

⑴求f”(x);

⑵令f”(x)=0,解出此方程在区间I的实根,并求出在区间Iduf”(x)不存在的点;

⑶对于⑵中求出的每一个实根或二阶导数不存在的点x,检查f”(x)在这个点x左右两侧邻近的符号,那么当两侧的符号相反时,这个点(x,f(x))是拐点,当两侧的符号相同时,(x,f(x))不是拐点。

函数的拐点怎么求

拐点求法:y=f(x)的拐点:求f'(x);令f'(x)=0,解出方程的实根,求出在区间I内f'(x)。

1、拐点和极值点通常是不一样的,两者的定义是不同的。极值点处一阶导数为0,一阶导数描述的是原函数的增减性。拐点处二阶导数为0,二阶导数描述的是原函数的凹凸性。

2、判读方法不同。如果该函数在该点及其领域有一阶二阶三阶导数存在,那么函数的一阶导数为0,且二阶导数不为0的点为极值点;函数的二阶导数为0,且三阶导数不为0的点为拐点。如,y=x^4,x=0是极值点但不是拐点。如果该点不存在导数,需要实际判断,如y=|x|,x=0时导数不存在,但x=0是该函数的极小值点。

拐点简介:

拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即连续曲线的凹弧与凸弧的分界点)。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。

拐点和极值点的区别:拐点是函数的凹凸分界点,拐点存在的必要条件是其二阶导数为0。对于一元三次函数,有1个拐点,最多可能有2个极值点,最多可能有2个驻点。在你的题目中,有一个拐点,但由于一阶导数恒大于0(属于增函数),所以没有极值点与驻点。如果三次项系数为0.0001,那么就有2个极值点和2个驻点,以及1个拐点。

本文来自网络,不代表广东技校网立场。转载请注明出处: https://www.jixiao001.cn/13747.html
上一篇
下一篇

作者: 广东技校网

免责声明:本站文章资料均来源于网络整理,文章中出现的专业、中专学校及中专学校排名仅供参考,不构成择校建议,请您务必对学校进行实地参观考察。

为您推荐

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注

联系我们

联系我们

0898-88881688

在线咨询: QQ交谈

邮箱: email@wangzhan.com

工作时间:周一至周五,9:00-17:30,节假日休息

关注微信
微信扫一扫关注我们

微信扫一扫关注我们

返回顶部