高阶导数十个常用公式
高阶导数十个常用公式是:
1、y=c,y’=0(c为常数) 。
2、y=x^μ,y’=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y’=a^x lna;y=e^x,y’=e^x。
4、y=logax, y’=1/(xlna)(a0且 a≠1);y=lnx,y’=1/x。
5、y=sinx,y’=cosx。
6、y=cosx,y’=-sinx。
7、y=tanx,y’=(secx)^2=1/(cosx)^2。
8、y=cotx,y’=-(cscx)^2=-1/(sinx)^2。
9、y=arcsinx,y’=1/√(1-x^2)。
10、y=arccosx,y’=-1/√(1-x^2)。
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f’(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
一阶导数的导数称为二阶导数,二阶以上的导数可由归纳法逐阶定义。二阶和二阶以上的导数统称为高阶导数。从概念上讲,高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。
对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
常见n阶导数公式大全
常见高阶导数8个公式如下:
常见高阶导数公式有莱布尼兹公式(uv)(n)=u(n)v+nu(n-1)v’+n(n-1)/2!u(n-2)v”+n(n-1)…(n-k+1)u(n-k)v(k)+…+ uv(n);e(x)的任意导数都是e(x),即e(x)的n次方=e(x)。
任意阶导数的计算:
对任意n阶导数的计算,由于 n 不是确定值,自然不可能通过逐阶求导的方法计算。此外,对于固定阶导数的计算,当其阶数较高时也不可能逐阶计算。
所谓n阶导数的计算实际就是要设法求出以n为参数的导函数表达式。求n阶导数的参数表达式并没有一般的方法,最常用的方法是,先按导数计算法求出若干阶导数,再设法找出其间的规律性,并导出n的参数关系式。
高阶导数常用公式大全
高阶导数十个常用公式是:
1、y=c,y’=0(c为常数)。
2、y=x^μ,y’=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y’=a^x lna;y=e^x,y’=e^x。
4、y=logax,y’=1/(xlna)(a0且a≠1);y=lnx,y’=1/x。
5、y=sinx,y’=cosx。
6、y=cosx,y’=-sinx。
7、y=tanx,y’=(secx)^2=1/(cosx)^2。
8、y=cotx,y’=-(cscx)^2=-1/(sinx)^2。
9、y=arcsinx,y’=1/√(1-x^2)。
导数的求导法则:
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
二阶导数公式详解
=d(dy)/dx*dx=d²y/dx²
dy是微元,书上的定义dy=f'(x)dx,因此dy/dx就是f'(x),即y的一阶导数。
dy/dx也就是y对x求导,得到的一阶导数,可以把它看做一个新的函数。
d(dy/dx)/dx,就是这个新的函数对x求导,也即y的一阶导数对x求导,得到的就是二阶导数。
函数凹凸性
设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,
(1)若在(a,b)内f”(x)0,则f(x)在[a,b]上的图形是凹的。
(2)若在(a,b)内f’‘(x)0,则f(x)在[a,b]上的图形是凸的。
高阶导数计算
高阶导数公式是二阶和二阶以上的导数。高阶导数可由一阶导数的运算规则逐阶计算,但从实际运算考虑这种做法是行不通的。
高阶导数莱布尼兹公式是(uv)(n)=u(n)v+nu(n-1)v’+n(n-1)/2!u(n-2)v”+n(n-1)…(n-k+1)u(n-k)v(k)+…+ uv(n)。高阶导数一般来说,就是一次一次地求导,要几次导数给几次;此类题有一定的难度。
怎么学好导数
首先要把几个常用求导公式记清楚;然后在解题时先看好定义域;对函数求导,对结果通分接下来,一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负。
正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像,根据图像就可以求出你想要的东西,比如最大值或最小值等。
如果特殊情况,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;反之,就减。